We show any slightly degenerate weakly group-theoretical fusion category admits a minimal extension. Let $d$ be a positive square-free integer, given a weakly group-theoretical non-degenerate fusion category $mathcal{C}$, assume that $text{FPdim}(mathcal{C})=nd$ and $(n,d)=1$. If $(text{FPdim}(X)^2,d)=1$ for all simple objects $X$ of $mathcal{C}$, then we show that $mathcal{C}$ contains a non-degenerate fusion subcategory $mathcal{C}(mathbb{Z}_d,q)$. In particular, we obtain that integral fusion categories of FP-dimensions $p^md$ such that $mathcal{C}subseteq text{sVec}$ are nilpotent and group-theoretical, where $p$ is a prime and $(p,d)=1$.