Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5


الملخص بالإنكليزية

The electronic band structure of the 2D kagome net hosts two different types of van Hove singularities (vHs) arising from an intrinsic electron-hole asymmetry. The distinct sublattice flavors (pure and mixed, p-type and m-type) and pairing instabilities associated to the two types of vHs are key to understand the unconventional many-body phases of the kagome lattice. Here, in a recently discovered kagome metal CsV3Sb5 exhibiting charge order and superconductivity, we have examined the vHs, Fermi surface nesting, and many-body gap opening. Using high-resolution angle-resolved photoemission spectroscopy (ARPES), we identify multiple vHs coexisting near the Fermi level of CsV3Sb5, including both p- and m-types of vHs emerging from dxz/dyz kagome bands and a p-type vHs from dxy/dx2-y2 kagome bands. Among the multiple vHs, the m-type vHs is located closest to the Fermi level and is characterized by sharp Fermi surface nesting and gap opening across the charge order transition. Our work reveals the essential role of kagome-derived vHs as a driving mechanism for the collective phenomena realized in the AV3Sb5 family (A = K, Rb, Cs) and paves the way for a deeper understanding of strongly correlated topological kagome systems.

تحميل البحث