Essential properties of AlCl4-related graphite intercalation compounds of aluminum-ion-based battery cathodes


الملخص بالإنكليزية

Up to now, many guest atoms/molecules/ions have been successfully synthesized into graphite to form the various compounds. For example, alkali-atom graphite intercalation compounds are verified to reveal the stage-n structures, including LiC6n and LiM8n [M=K. Rb and Cs; n=1, 2, 3; 4]. On the other side, AlCl4-ion/molecule ones are examined to show stage-4 and stage-3 cases at room and lower temperatures, respectively. Stage-1 and stage-2 configurations, with the higher intercalant concentrations, are unable to synthesize in experimental laboratories. This might arise from the fact that it is quite difficult to build the periodical arrangements along the longitudinal z and transverse directions simultaneously for the large ions or molecules. Our works are mainly focused on stage-1 and stage-2 systems in terms of geometric and electronic properties. The critical features, being associated with the atom-dominated energy spectra and wave function within the specific energy ranges, the active multi-orbital hybridization in distinct chemical bonds, and atom- & orbital-decomposed van Hove singularities, will be thoroughly clarified by the delicate simulations and analyses.

تحميل البحث