Layer Reduction: Accelerating Conformer-Based Self-Supervised Model via Layer Consistency


الملخص بالإنكليزية

Transformer-based self-supervised models are trained as feature extractors and have empowered many downstream speech tasks to achieve state-of-the-art performance. However, both the training and inference process of these models may encounter prohibitively high computational cost and large parameter budget. Although Parameter Sharing Strategy (PSS) proposed in ALBERT paves the way for parameter reduction, the computation required remains the same. Interestingly, we found in experiments that distributions of feature embeddings from different Transformer layers are similar when PSS is integrated: a property termed as Layer Consistency (LC) in this paper. Given this similarity of feature distributions, we assume that feature embeddings from different layers would have similar representing power. In this work, Layer Consistency enables us to adopt Transformer-based models in a more efficient manner: the number of Conformer layers in each training iteration could be uniformly sampled and Shallow Layer Inference (SLI) could be applied to reduce the number of layers in inference stage. In experiments, our models are trained with LibriSpeech dataset and then evaluated on both phone classification and Speech Recognition tasks. We experimentally achieve 7.8X parameter reduction, 41.9% training speedup and 37.7% inference speedup while maintaining comparable performance with conventional BERT-like self-supervised methods.

تحميل البحث