Propagation dynamics of radially polarized symmetric Airy beams in the fractional Schrodinger equation


الملخص بالإنكليزية

We analyze the propagation dynamics of radially polarized symmetric Airy beams (R-SABs) in a (2+1)-dimensional optical system with fractional diffraction, modeled by the fractional Schrodinger equation (FSE) characterized by the Levy index. The autofocusing effect featured by such beams becomes stronger, while the focal length becomes shorter, with the increase of . The effect of the intrinsic vorticity on the autofocusing dynamics of the beams is considered too. Then, the ability of R-SABs to capture nano-particles by means of radiation forces is explored, and multiple capture positions emerging in the course of the propagation are identified. Finally, we find that the propagation of the vortical R-SABs with an off-axis shift leads to rupture of the ring-shaped pattern of the power-density distribution.

تحميل البحث