Energy-efficient pathway for selectively exciting solute molecules to high vibrational states via solvent vibration-polariton pumping


الملخص بالإنكليزية

Selectively exciting target molecules to high vibrational states is inefficient in the liquid phase, which restricts the use of IR pumping to catalyze ground-state chemical reactions. Here, we demonstrate that this inefficiency can be largely solved by confining the liquid in an optical cavity under vibrational strong coupling conditions. For a liquid solution of $^{13}$CO$_2$ solute in a $^{12}$CO$_2$ solvent, cavity molecular dynamics simulations show that exciting a polariton (hybrid light-matter state) of the solvent with an intense laser pulse, under suitable resonant conditions, may lead to a very strong (> 3 quanta) and ultrafast (< 1 ps) excitation of the solute, all while the solvent is barely excited. By contrast, outside a cavity the same input pulse fluence can excite the solute by only half a vibrational quantum and the selectivity of excitation is low. Our finding is robust under different cavity volumes, which may lead to observable cavity enhancement on IR photochemical reactions in Fabry-Perot cavities.

تحميل البحث