Negative radiation pressure on an ensemble of atoms in free space


الملخص بالإنكليزية

Light is known to exert a pushing force through the radiation pressure on any surface it is incident upon, via the transfer of momentum from the light to the surface. For an atom, the interaction with light can lead to both absorption as well as emission of photons, leading to repulsive and attractive forces, respectively. For classical light, these two processes occur at the same rates. Therefore, a thermal ensemble of atoms at a finite temperature always experiences a net pushing force. In this paper, we show that when treated quantum mechanically the pulsed electromagnetic field interacting with the thermal ensemble of atoms leads to unequal transition rates, again resulting in a non-zero net force. However, the signature and the magnitude of the force depends upon the intensity of the light, the number of atoms, and the initial temperature of the ensemble. Thus, even at finite temperature, controlling the parameters of the electromagnetic pulse and the number of particles in the ensemble, the net force can be changed from repulsive to attractive, generating negative radiation pressure in the process. Quite counterintuitively, this negative radiation pressure arising out of pure quantum character of light gets stronger for higher temperatures.

تحميل البحث