Common Envelope Shaping of Planetary Nebulae. III. The Launching of Jets in Proto-Planetary Nebulae


الملخص بالإنكليزية

We compute successfully the launching of two magnetic winds from two circumbinary disks formed after a common envelope event. The launching is produced by the increase of magnetic pressure due to the collapse of the disks. The collapse is due to internal torques produced by a weak poloidal magnetic field. The first wind can be described as a wide jet, with an average mass-loss rate of $sim 1.3 times 10^{-7}$ Moy and a maximum radial velocity of $sim 230$ kms. The outflow has a half-opening angle of $sim 20^{circ}$. Narrow jets are also formed intermittently with velocities up to 3,000 kms, with mass-loss rates of $sim 6 times 10^{-12} $ Moy during short periods of time. The second wind can be described as a wide X-wind, with an average mass-loss rate of $sim 1.68 times 10^{-7}$ Moy and a velocity of $sim 30$ kms. A narrow jet is also formed with a velocity of 250 kms, and a mass-loss rates of $sim 10^{-12} $ Moy. The computed jets are used to provide inflow boundary conditions for simulations of proto-planetary nebulae. The wide jet evolves into a molecular collimated outflow within a few astronomical units, producing proto-planetary nebulae with bipolar, elongated shapes, whose kinetic energies reach $sim 4 times 10^{45}$ erg at 1,000 years. Similarities with observed features in W43A, OH231.8+4.2, and Hen 3-1475 are discussed. The computed wide X-wind produces proto-planetary nebulae with slower expansion velocities, with bipolar and elliptical shapes, and possible starfish type and quadrupolar morphology.

تحميل البحث