Radio frequency (RF) wireless energy transfer (WET) is a key technology that may allow seamlessly powering future massive low-energy Internet of Things (IoT) networks. To enable efficient massive WET, channel state information (CSI)-limited/free multi-antenna transmit schemes have been recently proposed in the literature. The idea is to reduce/null the energy costs to be paid by energy harvesting (EH) IoT nodes from participating in large-scale time/power-consuming CSI training, but still enable some transmit spatial gains. In this paper, we take another step forward by proposing a novel CSI-free rotary antenna beamforming (RAB) WET scheme that outperforms all state-of-the-art CSI-free schemes in a scenario where a power beacon (PB) equipped with a uniform linear array (ULA) powers a large set of surrounding EH IoT devices. RAB uses a properly designed CSI-free beamformer combined with a continuous or periodic rotation of the ULA at the PB to provide average EH gains that scale as $0.85sqrt{M}$, where $M$ is the number of PBs antenna elements. Moreover, a rotation-specific power control mechanism was proposed to i) fairly optimize the WET process if devices positioning information is available, and/or ii) to avoid hazards to human health in terms of specific absorption rate (SAR). We show that RAB performance even approaches quickly (or surpasses, for scenarios with sufficiently large number of EH devices, or when using the proposed power control) the performance of a traditional full-CSI based transmit scheme, and it is also less sensitive to SAR constraints. Finally, we discuss important practicalities related to RAB such as its robustness against non line-of-sight conditions compared to other CSI-free WET schemes, and its generalizability to scenarios where the PB uses other than a ULA topology.