An Open-source Bayesian Atmospheric Radiative Transfer (BART) Code: II. The {transit} Radiative-Transfer Module and Retrieval of HAT-P-11b


الملخص بالإنكليزية

This and companion papers by Harrington et al. and Blecic et al. present the Bayesian Atmospheric Radiative Transfer ({BART}) code, an open-source, open-development package to characterize extrasolar-planet atmospheres. {BART} combines a thermochemical equilibrium abundances ({TEA}), a radiative-transfer ({transit}), and a Bayesian statistical (MC3) module to constrain atmospheric temperatures and molecular abundances for given spectroscopic observations. Here, we describe the {transit} radiative-transfer package, an efficient line-by-line radiative-transfer C code for one-dimensional atmospheres, developed by P. Rojo and further modified by the UCF exoplanet group. This code produces transmission and hemisphere-integrated emission spectra. {transit} handles line-by-line opacities from HITRAN, Partridge & Schwenke ({water}), Schwenke (TiO), and Plez (VO); and collision-induced absorption from Borysow, HITRAN, and ExoMol. {transit} emission-spectra models agree with models from C. Morley (priv. comm.) within a few percent. We applied {BART} to the {Spitzer} and {Hubble} transit observations of the Neptune-sized planet HAT-P-11b. Our results generally agree with those from previous studies, constraining the {water} abundance and finding an atmosphere enhanced in heavy elements. Different conclusions start to emerge when we make different assumptions from other studies. The {BART} source code and documentation are available at https://github.com/exosports/BART.

تحميل البحث