How to Catch Marathon Cheaters: New Approximation Algorithms for Tracking Paths


الملخص بالإنكليزية

Given an undirected graph, $G$, and vertices, $s$ and $t$ in $G$, the tracking paths problem is that of finding the smallest subset of vertices in $G$ whose intersection with any $s$-$t$ path results in a unique sequence. This problem is known to be NP-complete and has applications to animal migration tracking and detecting marathon course-cutting, but its approximability is largely unknown. In this paper, we address this latter issue, giving novel algorithms having approximation ratios of $(1+epsilon)$, $O(lg OPT)$ and $O(lg n)$, for $H$-minor-free, general, and weighted graphs, respectively. We also give a linear kernel for $H$-minor-free graphs and make improvements to the quadratic kernel for general graphs.

تحميل البحث