Weyl Semimetal Made Ideal with a Crystal of Raman Light and Atoms


الملخص بالإنكليزية

Optical lattices are known for their flexibility to emulate condensed matter physics and beyond. Based on an early theoretical proposal [Science Bulletin 65, 2080 (2020)], a recent experiment published by Wang et al. [Science 372, 271 (2021)] accomplishes the first experimental realization of topological band structure of the ideal Weyl semimetal in ultracold atomic matter, prompting fundamental interest in the context of gapless topological physics. With a neat design of 3D spin-orbit interaction, the experiment has probed the gapless band topology through spin texture imaging and quantum quench dynamics. This work has far reaching implications to topological effects and quantum anomaly in condensed matter and high energy physics.

تحميل البحث