Portfolio selection in the periodic investment of securities modeled by a multivariate Merton model with dependent jumps is considered. The optimization framework is designed to maximize expected terminal wealth when portfolio risk is measured by the Condition-Value-at-Risk ($CVaR$). Solving the portfolio optimization problem by Monte Carlo simulation often requires intensive and time-consuming computation; hence a faster and more efficient portfolio optimization method based on closed-form comonotonic bounds for the risk measure $CVaR$ of the terminal wealth is proposed.