Classification of head impacts based on the spectral density of measurable kinematics


الملخص بالإنكليزية

Traumatic brain injury can be caused by head impacts, but many brain injury risk estimation models are less accurate across the variety of impacts that patients may undergo. We investigated the spectral characteristics of different head impact types with kinematics classification. Data was analyzed from 3,262 head impacts from lab reconstruction, American football, mixed martial arts, and publicly available car crash data. A random forest classifier with spectral densities of linear acceleration and angular velocity was built to classify head impact types (e.g., football), reaching a median accuracy of 96% over 1,000 random partitions of training and test sets. To test the classifier on data from different measurement devices, another 271 lab-reconstructed impacts were obtained from 5 other instrumented mouthguards with the classifier reaching over 96% accuracy. The most important features in the classification included both low-frequency and high-frequency features, both linear acceleration features and angular velocity features. Different head impact types had different distributions of spectral densities in low-frequency and high-frequency ranges (e.g., the spectral densities of MMA impacts were higher in high-frequency range than in the low-frequency range). Finally, with the classifier, type-specific, nearest-neighbor regression models were built for 95th percentile maximum principal strain, 95th percentile maximum principal strain in corpus callosum, and cumulative strain damage (15th percentile). This showed a generally higher R2-value than baseline models. The classifier enables a better understanding of the impact kinematics in different sports, and it can be applied to evaluate the quality of impact-simulation systems and on-field data augmentation. Key words: traumatic brain injury, head impacts, classification, impact kinematics

تحميل البحث