A novel Time-frequency Transformer and its Application in Fault Diagnosis of Rolling Bearings


الملخص بالإنكليزية

The scope of data-driven fault diagnosis models is greatly improved through deep learning (DL). However, the classical convolution and recurrent structure have their defects in computational efficiency and feature representation, while the latest Transformer architecture based on attention mechanism has not been applied in this field. To solve these problems, we propose a novel time-frequency Transformer (TFT) model inspired by the massive success of standard Transformer in sequence processing. Specially, we design a fresh tokenizer and encoder module to extract effective abstractions from the time-frequency representation (TFR) of vibration signals. On this basis, a new end-to-end fault diagnosis framework based on time-frequency Transformer is presented in this paper. Through the case studies on bearing experimental datasets, we constructed the optimal Transformer structure and verified the performance of the diagnostic method. The superiority of the proposed method is demonstrated in comparison with the benchmark model and other state-of-the-art methods.

تحميل البحث