Physical properties of amorphous molybdenum silicide films for single photon detectors


الملخص بالإنكليزية

We systematically investigated the physical properties of amorphous Mo$_{rm x}$Si$_{1-x}$ films deposited by the magnetron co-sputtering technique. The critical temperature $T_C$ of Mo$_{rm x}$ Si$_{1-x}$ films increases gradually with the stoichiometry x, and the highest $T_C$=7.9 K was found in Mo$_{rm 0.83}$ Si$_{0.17}$. Beyond $x$=0.83, preformed Cooper pairs and superconducting domains persist in the films, despite the superconducting state with perfect zero-resistivity is absent. The thick films of Mo$_{rm 0.83}$ Si$_{0.17}$ show surprising degradation in which the onset of zero-resistivity is suppressed below 2 K. The thin Mo$_{rm 0.83}$ Si$_{0.17}$ films, however, reveal robust superconductivity even with thickness d$leq$1 nm. We also characterized wide microwires based on the 2 nm thin Mo$_{rm 0.8}$ Si$_{0.2}$ films with widths 40 and 60 $mu$m, which show single-photon sensitivity at 780 nm and 1550 nm wavelength

تحميل البحث