On the complexity of spinels: Magnetic, electronic, and polar ground states


الملخص بالإنكليزية

This review summarizes more than 100 years of research on spinel compounds, mainly focusing on the progress in understanding their magnetic, electronic, and polar properties during the last two decades. Many spinel compounds are magnetic insulators or semiconductors; however, a number of spinel-type metals exists including superconductors and some rare examples of d-derived heavy-fermion compounds. In the early days, they gained importance as ferrimagnetic or even ferromagnetic insulators with relatively high saturation magnetization and high ordering temperatures, with magnetite being the first magnetic mineral known to mankind. However, spinels played an outstanding role in the development of concepts of magnetism, in testing and verifying the fundamentals of magnetic exchange, in understanding orbital-ordering and charge-ordering phenomena. In addition, the A- site as well as the B-site cations in the spinel structure form lattices prone to strong frustration effects resulting in exotic ground-state properties. In case the A-site cation is Jahn-Teller active, additional entanglements of spin and orbital degrees of freedom appear, which can give rise to a spin-orbital liquid or an orbital glass state. The B-site cations form a pyrochlore lattice, one of the strongest contenders of frustration in three dimensions. In addition, in spinels with both cation lattices carrying magnetic moments, competing magnetic exchange interactions become important, yielding ground states like the time-honoured triangular Yafet-Kittel structure. Finally, yet importantly, there exists a long-standing dispute about the possibility of a polar ground state in spinels, despite their reported overall cubic symmetry. Indeed, over the years number of multiferroic spinels were identified.

تحميل البحث