We use large deviation theory to obtain the free energy of the XY model on a fully connected graph on each site of which there is a randomly oriented field of magnitude $h$. The phase diagram is obtained for two symmetric distributions of the random orientations: (a) a uniform distribution and (b) a distribution with cubic symmetry. In both cases, the ordered state reflects the symmetry of the underlying disorder distribution. The phase boundary has a multicritical point which separates a locus of continuous transitions (for small values of $h$) from a locus of first order transitions (for large $h$). The free energy is a function of a single variable in case (a) and a function of two variables in case (b), leading to different characters of the multicritical points in the two cases.