In all known explicit computations on Weinstein manifolds, the self-wrapped Floer homology of non-compact exact Lagrangian is always either infinite-dimensional or zero. We show that a global variant of this observed phenomenon holds in broad generality: the wrapped Fukaya category of any positive-dimensional Weinstein (or non-degenerate Liouville) manifold is always either non-proper or zero, as is any quotient thereof. Moreover any non-compact connected exact Lagrangian is always either a (both left and right) non-proper object or zero in such a wrapped Fukaya category, as is any idempotent summand thereof. We also examine criteria under which the argument persists or breaks if one drops exactness, which is consistent with known computations of non-exact wrapped Fukaya categories which are smooth, proper, and non-vanishing (e.g., work of Ritter-Smith).