A regular left-order on finitely generated group $G$ is a total, left-multiplication invariant order on $G$ whose corresponding positive cone is the image of a regular language over the generating set of the group under the evaluation map. We show that admitting regular left-orders is stable under extensions and wreath products and give a classification of the groups all whose left-orders are regular left-orders. In addition, we prove that solvable Baumslag-Solitar groups $B(1,n)$ admits a regular left-order if and only if $ngeq -1$. Finally, Hermiller and Sunic showed that no free product admits a regular left-order, however we show that if $A$ and $B$ are groups with regular left-orders, then $(A*B)times mathbb{Z}$ admits a regular left-order.