This paper investigates adaptive control of nonlinear robot manipulators with parametric uncertainty. Motivated by generating closed-loop robot dynamics with enhanced transmission capability of a reference torque and with connection to linear dynamics, we develop a new adaptive approach by exploiting forwardstepping design and inertia invariance, yielding differential-cascaded closed-loop dynamics. With the proposed approach, we propose a new class of adaptive controllers for nonlinear robot manipulators. Our particular study concerning adaptive control of robots exhibits a design methodology towards establishing the connection between adaptive control of highly nonlinear uncertain systems (e.g., with a variable inertia matrix) and linear dynamics (typically with the same or increased order), which is a long-standing intractable issue in the literature.