Experimental Quantum Learning of a Spectral Decomposition


الملخص بالإنكليزية

Currently available quantum hardware allows for small scale implementations of quantum machine learning algorithms. Such experiments aid the search for applications of quantum computers by benchmarking the near-term feasibility of candidate algorithms. Here we demonstrate the quantum learning of a two-qubit unitary by a sequence of three parameterized quantum circuits containing a total of 21 variational parameters. Moreover, we variationally diagonalize the unitary to learn its spectral decomposition, i.e., its eigenvalues and eigenvectors. We illustrate how this can be used as a subroutine to compress the depth of dynamical quantum simulations. One can view our implementation as a demonstration of entanglement-enhanced machine learning, as only a single (entangled) training data pair is required to learn a 4x4 unitary matrix.

تحميل البحث