A topological pump enables robust transport of quantized particles when the system parameters are varied in a cyclic process. In previous studies, topological pump was achieved inhomogeneous systems guaranteed by a topological invariant of the bulk band structure when time is included as an additional synthetic dimension. Recently, bulk-boundary correspondence has been generalized to the bulk-disclination correspondence, describing the emergence of topological bounded states in the crystallographic defects protected by the bulk topology. Here we show the topological pumping can happen between different disclination states with different chiralities in an inhomogeneous structure. Based on a generalized understanding of the charge pumping process, we explain the topological disclination pump by tracing the motion of Wannier centers in each unit cell. Besides, by constructing two disclination structures and introducing a symmetry-breaking perturbation, we achieve a topological pumping between different dislocation cores. Our result opens a route to study the topological pumping in inhomogeneous topological crystalline systems and provides a flexible platform for robust energy transport.