We present a reformulation of the reactive rod model (RRM) of Dutta and Graham [Dutta, Sarit and Graham, Michael D., JNNFM 251 (2018)], a constitutive model for describing the behavior of dilute wormlike micelle solutions. The RRM treats wormlike micelle solutions as dilute suspensions of rigid Brownian rods undergoing reversible scission and growth in flow. Evolution equations for micelle orientation and stress contribution are coupled to a kinetic reaction equation for a collective micelle length, producing dynamic variations in the length and rotational diffusivity of the rods. This model has previously shown success in capturing many critical steady-state rheological features of dilute wormlike micelle solutions, particularly shear-thickening and -thinning, non-zero normal stress differences, and a reentrant shear stress-shear rate curve, and could fit a variety of steady state experimental data. The present work improves on this framework, which showed difficulty in capturing transient dynamics and high-shear behavior, by reformulating the kinetic equation for micelle growth on a more microstructural (though still highly idealized) basis. In particular, we allow for micelle growth associated with strong alignment of rods and breakage due to tensile stresses along the micelles. This new formulation captures both steady and transient shear rheology in good agreement with experiments. We also find good agreement with available steady state extensional rheology.