Quantum Theory of Measurement


الملخص بالإنكليزية

We describe a quantum mechanical measurement as a variational principle including interaction between the system under measurement and the measurement apparatus. Augmenting the action with a nonlocal term (a double integration over the duration of the interaction) results in a theory capable of describing both the measurement process (agreement between system state and pointer state) and the collapse of both systems into a single eigenstate (or superposition of degenerate eigenstates) of the relevant operator. In the absence of the interaction, a superposition of states is stable, and the theory agrees with the predictions of standard quantum theory. Because the theory is nonlocal, the resulting wave equation is an integrodifferential equation (IDE). We demonstrate these ideas using a simple Lagrangian for both systems, as proof of principle. The variational principle is time-symmetric and retrocausal, so the solution for the measurement process is determined by boundary conditions at both initial and final times; the initial condition is determined by the experimental preparation and the final condition is the natural boundary condition of variational calculus. We hypothesize that one or more hidden variables (not ruled out by Bells Theorem, due both to the retrocausality and the nonlocality of the theory) influence the outcome of the measurement, and that distributions of the hidden variables that arise plausibly in a typical ensemble of experimental realizations give rise to outcome frequencies consistent with Borns rule. We outline steps in a theoretical validation of the hypothesis. We discuss the role of both initial and final conditions to determine a solution at intermediate times, the mechanism by which a system responds to measurement, time symmetry of the new theory, causality concerns, and issues surrounding solution of the IDE.

تحميل البحث