Topological Lattice Defects by Groupoid Methods and Kasparovs KK-Theory


الملخص بالإنكليزية

The bulk-boundary and a new bulk-defect correspondence principles are formulated using groupoid algebras. The new strategy relies on the observation that the groupoids of lattices with boundaries or defects display spaces of units with invariant accumulation manifolds, hence they can be naturally split into disjoint unions of open and closed invariant sub-sets. This leads to standard exact sequences of groupoid $C^ast$-algebras that can be used to associate a Kasparov element to a lattice defect and to formulate an extremely general bulk-defect correspondence principle. As an application, we establish a correspondence between topological defects of a 2-dimensional square lattice and Kasparovs group $KK^1 (C^ast(mathbb Z^3),mathbb C)$. Numerical examples of non-trivial bulk-defect correspondences are supplied.

تحميل البحث