Intrinsic nonlinear elasticity deals with the deformations of elastic bodies as isometric immersions of Riemannian manifolds into the Euclidean spaces (see Ciarlet [9,10]). In this paper, we study the rigidity and continuity properties of elastic bodies for the intrinsic approach to nonlinear elasticity. We first establish a geometric rigidity estimate for mappings from a Riemannian manifold to a sphere (in the spirit of Friesecke--James--M{u}ller [20]), which is the first result of this type for the non-Euclidean case as far as we know. Then we prove the asymptotic rigidity of elastic membranes under suitable geometric conditions. Finally, we provide a simplified geometric proof of the continuous dependence of deformations of elastic bodies on the Cauchy--Green tensors and second fundamental forms, which extends the Ciarlet--Mardare theorem in [17] to arbitrary dimensions and co-dimensions.