Sums of polynomial-type exceptional units modulo $n$


الملخص بالإنكليزية

Let $f(x)inmathbb{Z}[x]$ be a nonconstant polynomial. Let $n, k$ and $c$ be integers such that $nge 1$ and $kge 2$. An integer $a$ is called an $f$-exunit in the ring $mathbb{Z}_n$ of residue classes modulo $n$ if $gcd(f(a),n)=1$. In this paper, we use the principle of cross-classification to derive an explicit formula for the number ${mathcal N}_{k,f,c}(n)$ of solutions $(x_1,...,x_k)$ of the congruence $x_1+...+x_kequiv cpmod n$ with all $x_i$ being $f$-exunits in the ring $mathbb{Z}_n$. This extends a recent result of Anand {it et al.} [On a question of $f$-exunits in $mathbb{Z}/{nmathbb{Z}}$, {it Arch. Math. (Basel)} {bf 116} (2021), 403-409]. We derive a more explicit formula for ${mathcal N}_{k,f,c}(n)$ when $f(x)$ is linear or quadratic.

تحميل البحث