Hawking radiation from squashed Kaluza-Klein black holes based on a generalized uncertainty principle


الملخص بالإنكليزية

We consider the Hawking radiation by the tunneling of charged fermions and charged scalar particles from the five-dimensional charged static squashed Kaluza-Klein black hole based on the generalized uncertainty principle. We derive corrections of the Hawking temperature to general relativity, which are related to the energy of the emitted particle, the size of the extra dimension, the charge of the black hole and the quantum effect predicted by the generalized uncertainty principle. It is shown that the quantum correction may slow down the increase of the Hawking temperature, which may lead to the thermodynamic stable remnant after the evaporation of the squashed Kaluza-Klein black hole.

تحميل البحث