Exploring the pulsational properties of two ZZ Ceti stars


الملخص بالإنكليزية

Context. We continued our ground-based observing project with the season-long observations of ZZ Ceti stars at Konkoly Observatory. Our present targets are the newly discovered PM J22299+3024, and the already known LP 119-10 variables. LP 119-10 was also observed by the TESS (Transiting Exoplanet Survey Satellite) space telescope in 120-second cadence mode. Methods. We performed standard Fourier analysis of the daily, weekly, and the whole data sets, together with test data of different combinations of weekly observations. We then performed asteroseismic fits utilising the observed and the calculated pulsation periods. For the calculations of model grids necessary for the fits, we applied the 2018 version of the White Dwarf Evolution Code. Results. We derived six possible pulsation modes for PM J22299+3024, and five plus two TESS pulsation frequencies for LP 119-10. Note that further pulsation frequencies may be present in the data sets, but we found their detection ambiguous, so we omitted them from the final frequency list. Our asteroseismic fits of PM J22299+3024 give 11 400 K and 0.46 Msun for the effective temperature and the stellar mass. The temperature is ~800 K higher, while the mass of the model star is exactly the same as it was earlier derived by spectroscopy. Our model fits of LP~119-10 put the effective temperature in the range of 11 800 - 11 900 K, which is again higher than the spectroscopic 11 290 K value, while our best model solutions give M* = 0.70 Msun mass for this target, near to the spectroscopic value of 0.65 Msun, likewise in the case of PM J22299+3024. The seismic distances of our best-fitting model stars agree with the Gaia astrometric distances of PM J22299+3024 and LP 119-10 within the errors, validating our model results.

تحميل البحث