We consider a further extension of our previous works in the treatment of the three-dimensional general relativistic Poynting-Robertson effect, which describes the motion of a test particle around a compact object as affected by the radiation field originating from a rigidly rotating and spherical emitting source, which produces a radiation pressure, opposite to the gravitational pull, and a radiation drag force, which removes energy and angular momentum from the test particle. The gravitational source is modeled as a non-spherical and slowly rotating compact object endowed with a mass quadrupole moment and an angular momentum and it is formally described by the Hartle-Thorne metric. We derive the test particles equations of motion in the three-dimensional and two-dimensional cases. We then investigate the properties of the critical hypersurfces (regions, where a balance between gravitational and radiation forces is established). Finally, we show how this model can be applied to treat radiation phenomena occurring in the vicinity of a neutron star.