Autoionizing Polaritons in Attosecond Atomic Ionization


الملخص بالإنكليزية

Light-induced states are commonly observed in the photoionization spectra of laser-dressed atoms. The properties of autoionizing polaritons, entangled states of light and Auger resonances, however, are largely unexplored. We employ attosecond transient-absorption spectroscopy to study the evolution of autoionizing states in argon, dressed by a tunable femtosecond laser pulse. The avoided crossings between the $3s^{-1}4p$ and several light-induced states indicates the formation of polariton multiplets. We measure a controllable stabilization of the polaritons against ionization, in excellent agreement with emph{ab initio} theory. Using an extension of the Jaynes-Cummings model to autoionizing states, we show that this stabilization is due to the destructive interference between the Auger decay and the radiative ionization of the polaritonic components. These results give new insights into the optical control of electronic structure in the continuum, and unlock the door to applications of autoionizing polaritons in poly-electronic systems.

تحميل البحث