Room temperature antiferromagnetic resonance and inverse spin-Hall voltage in canted antiferromagnets


الملخص بالإنكليزية

We study theoretically and experimentally the spin pumping signals induced by the resonance of canted antiferromagnets with Dzyaloshinskii-Moriya interaction and demonstrate that they can generate easily observable inverse spin-Hall voltages. Using a bilayer of hematite/heavy metal as a model system, we measure at room temperature the antiferromagnetic resonance and an associated inverse spin-Hall voltage, as large as in collinear antiferromagnets. As expected for coherent spin-pumping, we observe that the sign of the inverse spin-Hall voltage provides direct information about the mode handedness as deduced by comparing hematite, chromium oxide and the ferrimagnet Yttrium-Iron Garnet. Our results open new means to generate and detect spin-currents at terahertz frequencies by functionalizing antiferromagnets with low damping and canted moments.

تحميل البحث