Uniqueness for linear integro-differential equations in the real line and applications


الملخص بالإنكليزية

In this work we prove the uniqueness of solutions to the nonlocal linear equation $L varphi - c(x)varphi = 0$ in $mathbb{R}$, where $L$ is an elliptic integro-differential operator, in the presence of a positive solution or of an odd solution vanishing only at zero. As an application, we deduce the nondegeneracy of layer solutions (bounded and monotone solutions) to the semilinear problem $L u = f(u)$ in $mathbb{R}$ when the nonlinearity is of Allen-Cahn type. To our knowledge, this is the first work where such uniqueness and nondegeneracy results are proven in the nonlocal framework when the Caffarelli-Silvestre extension technique is not available. Our proofs are based on a nonlocal Liouville-type method developed by Hamel, Ros-Oton, Sire, and Valdinoci for nonlinear problems in dimension two.

تحميل البحث