REBa2Cu3O7-d (RE123, RE: rare earth) is one of the high-temperature superconductors with a transition temperature (Tc) exceeding 90 K. Because of its high Tc and large critical current density (Jc) under magnetic fields, RE123 superconductors have been expected to play a key role in superconductivity application. To accelerate application researches on RE123-based devices, further improvements of Jc characteristics have been desired. In this study, we investigated the effects of high-entropy alloying at the RE site on the superconducting properties, through the measurements of local (intra-grain) Jc (Jclocal) by a remanent magnetization method. We found that Jclocal shows a trend to be improved when four or five RE elements are solved at the RE site, which results in high configurational entropy of mixing (delta_Smix). Because high-entropy alloying can improve Jclocal of RE123 superconductors by modification of the RE site composition and delta_Smix, and the technique would be applicable together with other techniques, such as introduction of nanoscale disorders, our entropy-engineering strategy introduced here would be useful for development of RE123 superconducting materials available under high magnetic fields.