The use of magneto-optical techniques to tune the plasmonic response of nanostructures is a hot topic in active plasmonics, with fascinating implications for several plasmon-based applications and devices. For this emerging field, called magnetoplasmonics, plasmonic nanomaterials with strong optical response to magnetic field are desired, which is generally challenging to achieve with pure noble metals. To overcome this issue, several efforts have been carried out to design and tailor the magneto-optical response of metal nanostructures, mainly by combining plasmonic and magnetic materials in a single nanostructure. In this tutorial we focus our attention on magnetoplasmonic effects in purely plasmonic nanostructures, as they are a valuable model system allowing for an easier rationalization of magnetoplasmonic effects. The most common magneto-optical experimental methods employed to measure these effects are introduced, followed by a review of the major experimental observations that are discussed within the framework of an analytical model developed for the rationalization of magnetoplasmonic effects. Different materials are discussed, from noble metals to novel plasmonic materials, such as heavily doped semiconductors.