A Chaotic Pseudo Orthogonal Carriers Multi-Access (CPOCMA) communication based on Chaotic Pseudo Orthogonal Shape-forming Filter (CPOSF) bank, Chaotic Pseudo Orthogonal Matched Filter (CPOMF) bank and Chaotic Pseudo Orthogonal Correlation Filter (CPOCF) bank is proposed in this work. At the transmitter, the multiple CPOSFs are used to generate pseudo orthogonal signals. It provides a good trade-off between spectrum efficiency and high bit transmission rate. At the receiver, the CPOMF bank and CPOCF bank are used to maximize the Signal-to-Noise Ratio (SNR) and extract the received information from each sub-channel, respectively. The received signal is demodulated by averaging the sampled sequence from the matched filter bank output and sorting the sampling sequence from the CPOCF bank output to recover the transmitted information bits. The proposed CPOCMA communication system not only offers multiuser access with high reliability and high data transmission rate, but also achieves higher spectrum efficiency. Analytical Bit Error Rate (BER) expression is derived. The proposed communication system performance has been evaluated in Additive White Gaussian Noise (AWGN) channel and wireless channel by both numerical simulations and experiments based on a Wireless open-Access Research Platform (WARP), the results show the effectiveness and the superiority of the proposed method.