Efficient field-free perpendicular magnetization switching by a magnetic spin Hall effect


الملخص بالإنكليزية

Current induced spin-orbit torques driven by the conventional spin Hall effect are widely used to manipulate the magnetization. This approach, however, is nondeterministic and inefficient for the switching of magnets with perpendicular magnetic anisotropy that are demanded by the high-density magnetic storage and memory devices. Here, we demonstrate that this limitation can be overcome by exploiting a magnetic spin Hall effect in noncollinear antiferromagnets, such as Mn3Sn. The magnetic group symmetry of Mn3Sn allows generation of the out-of-plane spin current carrying spin polarization induced by an in-plane charge current. This spin current drives an out-of-plane anti-damping torque providing deterministic switching of perpendicular magnetization of an adjacent Ni/Co multilayer. Compared to the conventional spin-orbit torque devices, the observed switching does not need any external magnetic field and requires much lower current density. Our results demonstrate great prospects of exploiting the magnetic spin Hall effect in noncollinear antiferromagnets for low-power spintronics.

تحميل البحث