We carry out extended symmetry analysis of the (1+2)-dimensional Boiti-Leon-Pempinelli system, which enhances and generalizes many results existing in the literature. The complete point-symmetry group of this system is computed using an original megaideal-based version of the algebraic method. A number of meticulously selected differential constraints allow us to construct families of exact solutions of this system, which are significantly larger than all known ones. After classifying one- and two-dimensional subalgebras of the entire (infinite-dimensional) maximal Lie invariance algebra of this system, we study only its essential Lie reductions, which give solutions beyond the above solution families. Among reductions of the Boiti-Leon-Pempinelli system via differential constraints or Lie symmetries, we identify a number of famous partial and ordinary differential equations. We also show how all the constructed solution families can significantly be extended using Laplace and Darboux transformations.