Dynamically Emerging Topological Phase Transitions in Nonlinear Interacting Soliton Lattices


الملخص بالإنكليزية

We demonstrate dynamical topological phase transitions in evolving Su-Schrieffer-Heeger (SSH) lattices made of interacting soliton arrays, which are entirely driven by nonlinearity and thereby exemplify emergent nonlinear topological phenomena. The phase transitions occur from topologically trivial-to-nontrivial phase in periodic succession with crossovers from topologically nontrivial-to-trivial regime. The signature of phase transition is gap-closing and re-opening point, where two extended states are pulled from the bands into the gap to become localized topological edge states. Crossovers occur via decoupling of the edge states from the bulk of the lattice.

تحميل البحث