Optical detection of charge-density-wave instability in the non-magnetic kagome metal KV$_3$Sb$_5$


الملخص بالإنكليزية

Optical spectroscopy and density-functional calculations reveal electronic properties of the nonmagnetickagome metal KV$_3$Sb$_5$. Temperature and frequency-dependent optical measurements down to 10K and up to 2 eV energy range confirm bulk nature of the charge-density-wave (CDW) state below 78 K and gauge the charge gap of $Delta_{CDW} approx$ 60 meV at 10 K. We further detect strong phonon anomalies and the prominent low-energy localization peak indicative of the unconventional charge transport caused by electron-phonon or electron-electron interactions. Possible CDW structures of KV$_3$Sb$_5$, the star and hexagon (inverse star), are strongly reminiscent of $p$-wave states expected in the Hubbard model on the kagome lattice at the filling level of the van Hove singularity. The proximity to this regime may have intriguing and far-reaching implications for the physics of KV$_3$Sb$_5$ and related materials.

تحميل البحث