Democratic Source Coding: An Optimal Fixed-Length Quantization Scheme for Distributed Optimization Under Communication Constraints


الملخص بالإنكليزية

The communication cost of distributed optimization algorithms is a major bottleneck in their scalability. This work considers a parameter-server setting in which the worker is constrained to communicate information to the server using only $R$ bits per dimension. We show that $mathbf{democratic}$ $mathbf{embeddings}$ from random matrix theory are significantly useful for designing efficient and optimal vector quantizers that respect this bit budget. The resulting polynomial complexity source coding schemes are used to design distributed optimization algorithms with convergence rates matching the minimax optimal lower bounds for (i) Smooth and Strongly-Convex objectives with access to an Exact Gradient oracle, as well as (ii) General Convex and Non-Smooth objectives with access to a Noisy Subgradient oracle. We further propose a relaxation of this coding scheme which is nearly minimax optimal. Numerical simulations validate our theoretical claims.

تحميل البحث