Area-selective deposition and B $delta$-doping of Si(100) with BCl$_{3}$


الملخص بالإنكليزية

B-doped $delta$-layers were fabricated in Si(100) using BCl$_{3}$ as a dopant precursor in ultrahigh vacuum. BCl$_{3}$ adsorbed readily at room temperature, as revealed by scanning tunneling microscopy (STM) imaging. Annealing at elevated temperatures facilitated B incorporation into the Si substrate. Secondary ion mass spectrometry (SIMS) depth profiling demonstrated a peak B concentration $>$ 1.2(1) $times$ 10$^{21}$ cm$^{-3}$ with a total areal dose of 1.85(1) $times$ 10$^{14}$ cm$^{-2}$ resulting from a 30 L BCl$_{3}$ dose at 150 $^{circ}$C. Hall bar measurements of a similar sample were performed at 3.0 K revealing a sheet resistance of $R_{mathrm{s}}$ = 1.91 k$Omegasquare^{-1}$, a hole concentration of $n$ = 1.90 $times$ 10$^{14}$ cm$^{-2}$ and a hole mobility of $mu$ = 38.0 cm$^{2}$V$^{-1}$s$^{-1}$ without performing an incorporation anneal. Further, the conductivity of several B-doped $delta$-layers showed a log dependence on temperature suggestive of a two-dimensional system. Selective-area deposition of BCl$_{3}$ was also demonstrated using both H- and Cl-based monatomic resists. In comparison to a dosed area on bare Si, adsorption selectivity ratios for H and Cl resists were determined by SIMS to be 310(10):1 and 1529(5):1, respectively, further validating the use of BCl$_{3}$ as a dopant precursor for atomic precision fabrication of acceptor-doped devices in Si.

تحميل البحث