Efficient Topology Design Algorithms for Power Grid Stability


الملخص بالإنكليزية

The dynamic response of power grids to small disturbances influences their overall stability. This paper examines the effect of network topology on the linearized time-invariant dynamics of electric power systems. The proposed framework utilizes ${cal H}_2$-norm based stability metrics to study the optimal placement of lines on existing networks as well as the topology design of new networks. The design task is first posed as an NP-hard mixed-integer nonlinear program (MINLP) that is exactly reformulated as a mixed-integer linear program (MILP) using McCormick linearization. To improve computation time, graph-theoretic properties are exploited to derive valid inequalities (cuts) and tighten bounds on the continuous optimization variables. Moreover, a cutting plane generation procedure is put forth that is able to interject the MILP solver and augment additional constraints to the problem on-the-fly. The efficacy of our approach in designing optimal grid topologies is demonstrated through numerical tests on the IEEE 39-bus network.

تحميل البحث