Lifetimes of low-spin excited states in $^{98}$Zr were measured using the recoil-distance Doppler-shift technique and the Doppler-shift attenuation method. The nucleus of interest was populated in a $^{96}$Zr($^{18}$O,$^{16}$O)$^{98}$Zr two-neutron transfer reaction at the Cologne FN Tandem accelerator. Lifetimes of six low-spin excited states, of which four are unknown, were measured. The deduced $B(E2)$ values were compared with Monte Carlo shell model and interacting boson model with configuration mixing calculations. Both approaches reproduce well most of the data but leave challenging questions regarding the structure of some low lying states.