Multiplicity of solutions for a scalar field equation involving a fractional $p$-Laplacian with general nonlinearity


الملخص بالإنكليزية

We investigate the existence of infinitely many radially symmetric solutions to the following problem $$(-Delta_p)^s u=g(u) textrm{ in } mathbb{R}^N, uin W^{s,p}(mathbb{R}^N),$$ where $sin (0,1)$, $2 leq p < infty$, $sp leq N $, $2 leq N in mathbb{N}$ and $(-Delta_p)^s$ is the fractional $p$-Laplacian operator. We treat both of cases $sp=N$ and $sp<N.$ The nonlinearity $g$ is a function of Berestycki-Lions type with critical exponential growth if $sp=N$ and critical polynomial growth if $sp<N$. We also prove the existence of a ground state solution for the same problem.

تحميل البحث