Oikawa defined an unknotting operation on virtual knots, called a CF-move, and gave a classification of 2-component virtual links up to CF-moves by the virtual linking number and his $n$-invariant. In particular, it was proved that a CF-move characterizes the information contained in the virtual linking number for 2-component odd virtual links. In this paper, we extend this result by classifying odd virtual links and almost odd virtual links with arbitrary number of components up to CF-moves, using the virtual linking number. Moreover, we extend Oikawas $n$-invariant and introduce two invariants for 3-component even virtual links. Using these invariants together with the virtual linking number, we classify 3-component even virtual links up to CF-moves. As a result, a classification of 3-component virtual links up to CF-moves is provided.