Van der Waals (vdW) assembly of two-dimensional materials has been long recognized as a powerful tool to create unique systems with properties that cannot be found in natural compounds. However, among the variety of vdW heterostructures and their various properties, only a few have revealed metallic and ferroelectric behaviour signatures. Here we show ferroelectric semimetal made of double-gated double-layer graphene separated by an atomically thin crystal of hexagonal boron nitride, which demonstrating high room temperature mobility of the order of 10 m$^2$V$^{-1}$s$^{-1}$ and exhibits robust ambipolar switching in response to the external electric field. The observed hysteresis is tunable, reversible and persists above room temperature. Our fabrication method expands the family of ferroelectric vdW compounds and offers a route for developing novel phase-changing devices.