Thermoelectric effects at a Germanium-electrolyte interface: measuring 100 nK temperature oscillations at room temperature


الملخص بالإنكليزية

We describe measurements of 100 nK temperature oscillations at room temperature, driven at the complex interface between p-doped Germanium, a nm size metal layer, and an electrolyte. We show that heat is deposited at this interface by thermoelectric effects, however the precise microscopic mechanism remains to be established. The temperature measurement is accomplished by observing the modulation of black body radiation from the interface. We argue that this geometry offers a method to study molecular scale dissipation phenomena. The Debye layer on the electrolyte side of the interface controls much of the dynamics. Interpreting the measurements from first principles, we show that in this geometry the Debye layer behaves like a low frequency transmission line.

تحميل البحث