We introduce cluster-based mean-field, perturbation and coupled-cluster theories to describe the ground state of strongly-correlated spin systems. In cluster mean-field, the ground state wavefunction is written as a simple tensor product of optimized cluster states. The cluster-language and the mean-field nature of the ansatz allows for a straightforward improvement based on perturbation theory and coupled-cluster, to account for inter-cluster correlations. We present benchmark calculations on the 2D square $J_1-J_2$ Heisenberg model, using cluster mean-field, second-order perturbation theory and coupled-cluster. We also present an extrapolation scheme that allows us to compute thermodynamic limit energies very accurately. Our results indicate that, even with relatively small clusters, the correlated methods can provide an accurate description of the Heisenberg model in the regimes considered. Some ways to improve the results presented in this work are discussed.